BIOSILICIFICATION: Formation of Amorphous Silica Complex Structures in Biological Systems

DIATOMS: Living in a Constructal Environment, p. 143

Silica Biominerals

Mineral	Formula	Organism	Location	Function
Silica	SiO₂· <i>n</i> H₂O	Diatoms Choanoflagellates Radiolarians Chrysophyts Limpets Plants	Cell wall Cellular Cellular Cell wall scales Teeth Leaves	Exoskeletons Protection Micro-skeleton Protection Grinding Protection

Radiolarian microskeleton

Diatom shell

Physicochemical Characterization of Biosilica

Plant Biosilica

Sheet-like

globular

fibrilar

BIOSILICIFICATION: Ornate Silica "Super-structures" Not Reproduced by Man

Gross Biogenic Silica Production: ~ 240 ± 40 Tmol "Si"/annum Silicon Processing: 6.7 Giga tons/annum

THE DIATOM: An Ideal Protist System for the Study of Biosilicification

M. Sumper, Science 2002, 295, 2430.

SILICA FORMATION: Condensation Polymerization Of Silicic Acid at pH ~ 7

T. Coradin, P. Jean Lopez, ChemBioChem 2003, 4, 251.

BIOSILICA FORMATION: Inside the Silica Deposition Vesicle (SDV)

THE CATALYTIC ROLE OF BIOMOLECULES ON SILICA FORMATION: Silaffins

N. Kröger, S. Lorenz, E. Brunner, M. Sumper, Science 2002, 298, 585

SILICA BIOTRANSPORT: How is "Silicon" Transported Inside the SDV?

Transport of "soluble" silicate into the SDV
Increase of silicate concentration
Supersaturation in the SDV
Silica formation "at will" and "when needed"
Role of Silica Transport Vesicle (STV)
Role of biomolecules for silicon transport

GOAL: To identify macromolecules that extend or delay silica formation from soluble silicate

- Study silicification "in vitro" at pH ~ 7 in the absence of any "additives"
- Identify macromolecules that may have a "delay" effect on silicification
- Study the inhibitory effect of these macromolecules "in vitro" and compare to "control"
- Long-term (3 days) and short-term (8 h) experiments
- > Monitor "soluble silica"
- > Study silica formed (if any) by several techniques
- > Identify mechanisms, structure/function relationships
- > Ways to improve inhibitory activity

ATTRIBUTES OF MACROMOLECULES THAT AFFECT SILICATE CONDENSATION

Charged polyelectrolytes, water-soluble
Usually Cationic or Partially Cationic
"Proper" extent of Cationic Charge
What Kind of Cationic Groups?
Zwitter-Ions?

What about "neutral" polymers?

CLASSES OF MACROMOLECULES STUDIED

 \succ Cationic Dendrimers (-NH₃⁺ end-groups) \succ Cationic, Amine-Containing Polymers (-NH₃+, -NH₂R+, -NHR₂+ groups) Purely Cationic, Ammonium-Containing Polymers (-NR₃⁺ groups) Copolymers (neutral + cationic groups) \succ Zwitter-lons (-NH₂R⁺, -NHR₂⁺ and –PO₃H⁻ Groups) Cationic, Phosphonium-Based oligomers Neutral Polymers (polyvinylpyrrolidone)

FUNCTIONALITY OF DENDRIMERS AS SiO₂ INHIBITORS (" $\delta \epsilon v \tau \rho o v$ " + " $\mu \epsilon \rho o \varsigma$ ")

PAMAM = polyaminoamide

Biodegradable by virtue of their amide bonds

PAMAM generation 1 (8 -NH₂ terminal groups)

Tomalia, D. A., et al. Angew. Chem. Int. Ed. Engl. 1990, 29, 138.

VARIOUS GENERATIONS OF DENDRIMERS

EFFECT OF DENDRIMERS ON SIO₂ FORMATION

Neofotistou, E.; Demadis, K.D. Coll. & Surf. A: Physicochem. Eng. Asp. 2004, 242, 213.

DISPERSION OF SiO₂ – PAMAM-1 PRECIPITATES USING ANIONIC POLYMERS

Mavredaki, E.; Neofotistou, E.; Demadis, K.D. Ind. Eng. Chem. Res. 2005, 44, 7019. Demadis, K.D.; Neofotistou, E. Chem. Mater. 2007, 19, 581.

DISPERSION OF SiO₂ – PAMAM-2 PRECIPITATES USING GREEN ANIONIC POLYMERS

Mavredaki, E.; Neofotistou, E.; Demadis, K.D. Ind. Eng. Chem. Res. 2005, 44, 7019. Demadis, K.D.; Neofotistou, E. Chem. Mater. 2007, 19, 581.

STABLE DISPERSIONS OF SiO₂ – PAMAM PRECIPITATES WITH GREEN ANIONIC POLYMERS

AMORPHOUS SIO₂-PAMAM COMPOSITES

1400

CATIONIC BIO-POLYMERS FOR SIO₂ INHIBITION

EFFECT OF CATIN-1280 BIO-POLYMER ON SiO₂ INHIBITION

Demadis, K.D.; Ketsetzi, A. Desalination 2008, 223, 487

SYNERGY BETWEEN CATIN-1280 AND CMI

Demadis, K.D.; Ketsetzi, A. Desalination 2008, 223, 487

SYNERGISTIC EFFECTS IN SiO₂ INHIBITION: CATIN + PASP

EFFECTS OF ZWITTER-IONIC POLYMERS ON SiO₂ INHIBITION: Phosphonomethylchitosan

(m = 0.16, n = 0.37, p = 0.24, q = 0.14)

Effect of Phosphonomethylchitosan (PCH) On Silica Formation

Demadis, K.D.; Ketsetzi, K. Pachis; A. Ramos, V.M. Biomacromolecules 2008, 9, 3288.

Phosphonomethylchitosan (PCH) Entrapment in the Silica Matrix

Demadis, K.D.; Ketsetzi, K. Pachis; A. Ramos, V.M. Biomacromolecules 2008, 9, 3288.

Conclusions

 ★ Biosilicification is a very complex process (*in vitro* silicification, too!)
 ★ Nature uses silica biominerals for different purposes
 ★ Biosilica is not simple inorganic system
 ★ Biosilica is a composite material
 ★ There are many potential applications of silica